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Abstract
In this paper we describe a research agenda for a

study into the use of inconsistency analysis as a tool for
software V&V, and in particular, the use of category the-
ory as a basis for modeling consistency relationships
between the various artifacts of software development,
including specifications, design, test cases, etc. Our ex-
pectation is that inconsistency analysis is fundamental to
much of the work of V&V, and that a systematic approach
will have impacts across a wide range of V&V tasks. Two
goals are described: an account of the contribution of
inconsistency analysis to various V&V analyses, and the
development of a formal framework for inconsistency
analysis. Our approach to the development of the latter is
through the refinement of the viewpoint framework using
the language of category theory. We discuss the relation-
ship between specification morphisms, as conventionally
conceived in work on composition of specifications, and
inter-viewpoint consistency relationships. We conclude
that inconsistency analysis has the potential to address
the ’air gaps’ between methods used during the various
phases of the software lifecycle.

1 Introduction

A key problem in the development of large scale
software systems is to detect and correct inconsistencies
that arise between the various artifacts (i.e. specifications,
designs, code, etc.) of a software project, especially where
these artifacts are developed and refined by geographi-
cally distributed teams. Existing software development
environments tend to provide detailed support for indi-
vidual phases of the software lifecycle, but leave ‘air-
gaps’ between artifacts produced at different phases (e.g.,
between requirements specifications and design models).
Such gaps hinder automated analysis and management of

consistency within a project. This lack of consistency
management is one of the leading causes of errors in
large, complex software development efforts. Much of the
effort of verification and validation (V&V) is concerned
with detecting and tracking inconsistencies between proj-
ect artifacts.

Recent studies of software development and V&V
processes have indicated that inconsistency is common-
place throughout the software lifecycle [1]. Inconsisten-
cies occur because different teams proceed at different
paces, because requirements evolve during the project,
because information is not always available when needed,
and because methods and process models may not fit the
local contingencies on a project. Although inconsistencies
represent potential sources of error during development, it
does not follow that consistency should be enforced. For
practical purposes, in a large, distributed development
effort is necessary to tolerate inconsistencies for periods
of time during development. However, it is important to
identify and track inconsistencies, as it is the undetected
inconsistencies that are likely to cause errors, or result in
re-work [2].

Two key research challenges for successful manage-
ment of inconsistency are (1) to develop analysis tech-
niques that reveal and characterise inconsistencies, and
(2) to provide a modeling scheme to represent and track
consistency relationships between the various artifacts of
software development. A number of approaches have been
proposed to address these problems in specific cases, each
grounded in a specific software development method [3-
5]. However, these approaches do not address the ‘air
gaps’ between methods. For example, a requirements
analysis method and a design method might each provide
sophisticated consistency checking, but in most cases, the
problem of checking consistency between the require-
ments and design models is largely a manual one. In large
projects, it is normal to apply multiple methods in each
phase, especially to achieve the breadth of analysis
needed for V&V purposes.1 The research described in this paper was carried out by West Vir-
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In this paper we describe a research agenda for a
study into the use of inconsistency analysis as a tool for
software V&V, and in particular, the use of category the-
ory as a basis for modeling consistency relationships be-
tween software specification and design artifacts. Our
expectation is that inconsistency analysis underpins much
of the work of V&V, and that a systematic approach will
have impacts across a wide range of V&V tasks. Our
choice of category theory as a basis for this work is based
on the success of category theory as a framework for
composing specifications, and especially for reasoning
about the correctness of specification composition and
refinement, through the use of specification morphisms
[6].

2 Technical Objectives

The objectives of our research are:
• To investigate the extent to which inconsistency

analysis supports and complements the various types
of analysis performed in software verification and
validation. We will concentrate on the consistency
relationships (a) between different parts of a require-
ments specification; (b) between requirements and
design models; (c) between design models and test
cases.

• To develop a generalized schema for expressing ar-
bitrary consistency relationships between software
development artifacts, including requirements, de-
signs and test cases. Existing schema for expressing
consistency relationships rely on the well-formedness
rules implied by the semantic models of individual
development methods. Such approaches cannot there-
fore express relationships between artifacts devel-
oped using different methods, such as artifacts
pertaining to different phases in the development life-
cycle. A generalized schema is needed to express
such relationships.

• To explore the applicability of our category-theoretic
approach to allow composition of partial specifica-
tions or specifications only partially related to each
other. Existing categorical approaches support speci-
fication of components and relationships between
these components, and construction of the resulting
system specification using composition operations
(horizontal structuring). They also support the re-
finement of each component (vertical aspects) in a
way that is compatible with horizontal composition
(i.e. the composition of refined specifications is a re-
finement of the specification built by composition of
the abstract components). We aim to extend this
framework to be able to define partial specifications,
partial relationships between specifications and to

compose such specifications. On the vertical level,
we are interested in formalizing consistency relation-
ships between existing specifications of a component
at different levels of abstraction. We will explore the
use of this approach in a V&V context, to model dis-
covered relationships between existing specification
components, and to keep track of and reason about
inconsistencies.

3 Approach

The project will concentrate on case studies within
NASA IV&V efforts including projects such as the Inter-
national Space Station (ISS), New Millennium Program
(NMP), the Shuttle avionics software, and the Shuttle
Checkout and Launch Control System (CLCS). Our
analysis will focus on aspects of traceability between
specifications, designs, code, and test plans for these proj-
ects. In each case, these artifacts are available in a mixture
of formal and informal notations. Initially, we will con-
centrate on those parts of the requirements and designs
that are already formally defined, or for which a formal
translation can be derived with relative ease.

Our first case study will examine the change requests
for the space shuttle avionics software. These documents
offer a rich source of data for modeling, as they are ex-
tremely well documented, and specified at a relatively low
level of detail (detailed processing requirements are often
specified in HAL, which is really a simple imperative
programming language). Verification and validation of
these change requests involves a great deal of cross-
checking between different parts of the affected specifica-
tions. Furthermore, there is currently no way of validating
that the proposed changes are consistent with high level
requirements, other than by extensive manual inspection,
nor that the test cases derived from the change request
adequately cover all the affected behaviors of the system.
The current manual inspection process consists of a com-
bination of syntactic consistency checking, coupled with
validation through the application of domain expertise.
We plan construct a set of formal models from the re-
quirements specifications, selected from those affected by
particular change requests. This set of formal models will
then provide us with a concrete example against which we
can assess the proposed approaches for consistency
checking.

Our approach is based on the application of a number
of related technologies, including techniques for com-
posing specifications and specification refinements (E.g.
SpecWare), the use of autogenerators for deriving imple-
mentations directly from design models (E.g. MatrixX),
and the use of model checkers (e.g. SPIN) and theorem
provers (e.g., PVS) for verifying the behavioural proper-
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ties of specifications and design models. Each of these
technologies provides a means to analyse some aspects of
the consistency relationships we are targeting.

Specifically, we plan to investigate the following
types of consistency relationship:
• Requirements ↔ Requirements: Functional require-

ments for embedded systems are typically represented
as a set of mappings between events in the environ-
ment and control actions. Non-functional require-
ments (e.g. safety, performance, etc) are then
represented as global constraints on the behaviour of
the system. Requirements for large systems are speci-
fied by composing the specifications for different
functional areas. The challenge for consistency man-
agement is to use the composition relationships be-
tween partial specifications to analyse consistency as
the specifications evolve. The proposed research will
apply SpecWare to specifications drawn from the
case studies, and explore the use of specifications
morphisms to track consistency relationships between
specifications that are subjected to non-truth pre-
serving evolution.

• Requirements ↔ Design: Requirements define the
functional behaviour of a system, while design mod-
els define the internal structure (i.e. architecture) of a
system. Consistency between design models and re-
quirements is concerned with whether the design
model exhibits the required behaviour, and satisfies
all the constraints. Our experiments with model
checking have demonstrated that if the design models
(for real time control systems) are expressed as state
machines, and requirements as temporal properties of
those machines, consistency checking can be
achieved by exploring the traces that satisfy both ma-
chines. To demonstrate that any individual require-
ment is satisfied, we describe its negation as a Büchi
automaton, and check that there is no trace that is ac-
cepted by both machines [7]. The proposed research
will compare this work on model checking with the
support for specification elaborations provided by the
specware approach, to seek ways of integrating the
two approaches.

• Design ↔ Code: During development, the code must
not only implement behaviors as specified by the de-
sign model, but models themselves may need to
change based on discovered limitations of an imple-
mentation environment [8]. Managing the consistency
between code and design models is important as the
software evolves because any divergence may lead to
serious flaws later in the lifecycle. Our work with
formal testing has led us to an approach based on the
generation of representative test cases from a formal
model, so that a combination of model checking and

testing instrumented code can be used to monitor
consistency. The proposed research will examine how
to automate this approach, and explore how this ap-
proach can be integrated with the work on require-
ments consistency, as a step towards full consistency
checking from requirements through to code.

4 Previous Work

4.1 Inconsistency Management

Our previous work in the requirements area has been
based on the viewpoints framework [9]. This framework
supports distributed software development through a col-
lection of loosely coupled heterogeneous objects (‘view-
points’), each of which provides a self-contained
specification development tool. Global consistency is
achieved through a series of pairwise consistency checks
between viewpoints. The framework is method-
independent, in that any method can be defined within the
framework by designing a set of viewpoint templates and
fine-grained process models. This allows us to explore the
issues of consistency management both within and be-
tween methods. Our recent work has examined the appli-
cation of this framework in a V&V context, in which
partial formal specifications are represented as viewpoints
and verified for consistency with other viewpoints. An
advantage of this approach is that it permits the V&V
effort to concentrate on just those portions of a specifica-
tion that are critical, and test only the properties of inter-
est, without developing complete formal models.

There is a growing body of work on managing con-
sistency in specifications. Easterbrook & Nuseibeh [2]
demonstrated how to delay the resolution of inconsis-
tency, and provide a generic framework for expressing
consistency relationships. Other work has developed de-
tailed consistency checking schemes by making use of
semantic models underlying a particular method to deter-
mine what consistency rules are needed and how to op-
erationalize them. For example, Heitmeyer’s work with
consistency checking in SCR [4] uses the semantics of
SCR to define a series of consistency rules ranging from
simple syntactic checks (e.g. that all names are unique) to
semantic properties of tables (e.g. coverage and disjoint-
ness). Similarly, Leveson’s work on consistency checking
in RSML [3] uses the semantics of the statechart formal-
ism to determine a set of consistency rules that can be
tested, tractably, using a high level abstract model. In both
these approaches, the completeness of the formal specifi-
cations is important, and consistency checking is seen as
part of the process of obtaining a complete, consistent
specification.
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Unfortunately, these approaches do not help with
consistency checking between partial specifications ex-
pressed using different modeling schemes. Such ap-
proaches do not help to bridge the ’air gaps’ in software
development, nor do they help with consistency checking
between the various models developed for V&V pur-
poses. There are implicit consistency relationships be-
tween the different models generated during a software
lifecycle, but there is no overall ‘method’ to tell us what
these relationships are. Our work with the viewpoints
framework addressed this problem by recognizing that
some consistency relationships are defined by the method,
while others arise from the application domain, and some
arise from local contingencies during development. It is
unreasonable to expect that any method or integration of
methods can be defined in sufficient detail such that all
potential consistency relationships can be determined a
priori. Instead, support is needed for discovered relation-
ships, such that these can be recorded and monitored as
the specifications evolve. Recent work on restructuring
specifications using viewpoints indicates that such an ap-
proach is viable [10].

4.2 Specification Composition

Category theory has been used for a number of years
as a framework for composing formal specifications,
based on early work by Goguen (E.g. see [11]). Category
theory provides an abstract framework for reasoning
about specification composition through the use of speci-
fication morphisms. For example, if specifications are
expressed as theories in some suitable logic, a morphism
maps the terms of one specification into the terms of the
other. Composition via specification morphisms can then
be checked for correctness by proving that the axioms of
one specification hold as theorems of second specifica-
tion. This approach has been applied in a number of ways,
including reasoning about the correctness of specification
refinements, and for modularizing the specifications for
complex systems. In the latter case, if the structure of the
implementation reflects the structure of the specification,
then verification is greatly facilitated, whether it is
achieved through correctness proofs, or through specifi-
cation-based testing.

Much of the work on composition of specification via
category theory has concentrated on the composition of
algebraic specifications. Fiadeiro and Maibaum [12] de-
veloped a framework based on temporal logic, in which
each component of a system is described by a theory in
temporal logic, and theories are interconnected using
specification morphisms. Michel and Wiels [13] have
extended this framework to allow the interface for a mod-
ule to be specified separately from the body, with a set of

morphisms relating the interface specification to the body
specification, and a further set of morphisms defining
composition relations between modules. This work also
examined how validation properties can be decomposed
across the specification components, so as to reduce the
effort involved in proving them.

A number of tools are now available that support a
category theoretic approach to construction of specifica-
tions (E.g. Specware [6] Moka [13]). These tools typically
have a kernel that implements a basic categorical frame-
work, on top of which is defined the specification lan-
guage, such that specifications form the objects of a
category whose morphisms represent relationships be-
tween specifications. The tool can then be coupled to a
model checker or a theorem prover, to support the con-
struction of the necessary proofs when morphisms are
defined.

4.3 Specification Based Testing

In the area of managing consistency between the de-
sign artifacts and code in a project, we have used a con-
cept known as formal testing [14] to maintain fidelity
between finite state models of the behavior of complex
communication protocols and the code that purports to
implement the protocol specification. Through the use of
model checkers, we are able to partition the state space of
the protocol into equivalence partitions based on the high
level requirements. We can then generate test cases corre-
sponding to partitions and determine whether the imple-
mentation is in agreement with the protocol model. If a
discrepancy appears, the code or the model or both can be
refined as necessary. The use of testing to maintain high-
fidelity between the design model and code means that
any analysis of the model is congruent with the behavior
of the implementation.

5 Detailed Research Tasks

The research proposed here will focus on the use of
category theory to formalize and apply existing work on
inconsistency management. Category theory is useful not
only for the theoretical foundation it provides for reason-
ing about specification compositions, but also because it
gives us a precise language for talking about the relation-
ships between specifications. It is informative to attempt
to translate the informal terms we have been using in the
viewpoints work into the language of category theory. For
example, if we consider inter-viewpoint consistency rela-
tions as specification morphisms, then we are forced to
address explicitly the question of how vocabulary used in
one viewpoint maps onto the vocabulary of another.
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A specification morphism maps all of the terms of A
into the terms of B, and requires that all axioms of A can
be proven as theorems of B. Therefore, if the morphism
can be constructed, and all the necessary proof obligations
dispatched, then A and B are consistent. However, this is
too strong as a definition of inter-viewpoint consistency,
as it effectively requires that A be included in B (with
renaming). Past work on specification morphisms has
been focussed on using colimits as a means of specifica-
tion composition (For example, figure 1a describes the
simplest such construction, a coproduct).

However, in the viewpoints framework we are inter-
ested in describing partial overlap between specifications.
For any pair of viewpoints, there would typically not be a
specification morphism between them, but there may be
constructions that relate the two of them using specifica-
tion morphisms. For example figure 1b shows a pushout
diagram where Y represents the overlap between specifi-
cations A and B. This area of overlap is one for which we
want to define a consistency relationship. If we wish to
capture this consistency relationship, we need to express
three things: the area of overlap (Y), and each of the mor-

phisms (ya and yb) that define how this area of overlap is
expressed in each viewpoint. Furthermore, as there may
be a number of areas of overlap between any two specifi-
cations, we obtain a diagram like the one of fig 1c. It is
then interesting to study the meaning of the limit of such a
diagram. Hence, we can decompose a consistency rela-
tionship into its constituent parts, in order to reason about
partial consistency.

5.1 Task 1: Tool analysis

This task will compare the available tools for cate-
gorical approaches to specification composition. We will
compare Moka and Specware and explore how easily they
can be extended to support different types of specification
models, and different types of specification composition.
For example, it should be possible to extend Specware to
handle state machine models, in place of the algebraic
specifications currently used. Similarly it should be possi-
ble to extend Moka to deal with morphisms between re-
finements of temporal specifications (at present it only
deals with horizontal composition). As a result of this
experimentation, we will chose one of these tools to base
further research on.

5.2 Task 2: Composition of Evolving
specifications

This task will explore the issues that arise when you
modify specifications once morphisms have been defined
between them. As specifications for large complex sys-
tems can be expected to evolve considerably during their
lifetimes, we need to examine how much effort is needed
to re-prove all the affected morphisms if a specification is
altered, and whether an incremental approach can be used
to avoid having to do large amounts of (re-)proofs. We
will use the evolution of existing specifications on the
case studies (e.g. using a series of versions of a single
specification) to drive the investigation, although in prac-
tice we expect to have to abstract away a lot of detail in
order to understand the essential nature of the changes.

The second part of this task is to explore how to sup-
port the resolution of inconsistencies. We will explore the
role of partial consistency in the framework, examine how
to represent consistency relationships in a categorical
framework and study the use of categorical constructions
to reason about the degree to which two viewpoints are
consistent, and find consistent subsets of the viewpoints.

Our approach is based on the notion of partial com-
position. By partial composition we mean a relationship
(morphism) between two specifications in which the
specifications and the relationship between them may be

a)

A B

X

ji

b) A B

Y

ybya

c) A B

Y

ybya

ya1

ya2

yb2

yb1

Y1

Y2

Figure 1: Universal constructions in category
theory: (a) a coproduct; (b) a pushout diagram;
(c) a cone.
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only partially defined. Traditional approaches to formal-
izing software development have focussed on a “correct
by construction” approach, in which components are
specified, proved correct, and then composed together in
such a way as to preserve their properties. However, in a
large project, practical considerations make such an ap-
proach awkward. In particular it is desirable to be able to
mix specification and composition steps such that at any
particular moment in the process we may have established
only some of the properties of the components, and some
of the composition relations, such that there may be many
inconsistencies between them. In such a situation, we need
to be able to reason about the degree of consistency, and
the general effect of different development options on the
consistency and completeness of the overall scheme. Also,
for verification and validation, there is a need for frame-
works that formalize and analyze informal specifications
where “correctness by construction” was not an applicable
development strategy.

5.3 Task 3 - (De)composition of consistency
properties

Through case study work, we will begin to build a
classification of the types of system property that can be
decomposed (for verification purposes) using the specifi-
cation structure achieved through the use of specification
morphisms. Our aim is first to empirically validate the
initial work in decomposing system properties, as de-
scribed in [13], and secondly to extend this approach to
consistency relationships between viewpoints, using the
notion of consistency morphisms. Equally important dur-
ing this task will be to find out what types of property
cannot be decomposed by our approach.

5.4 Task 4 - Compositionality of test cases

This task will explore the link between specification
composition and testing. In contrast with other approaches
to creating large formal specifications (e.g. abstraction
and projection) the composition of specifications via
specification morphisms is expected to provide a good fit
with the decomposition of system functionality for test
purposes. We will explore how well the composition
achieved in tools such as Moka and Specware helps in
structuring test cases, especially in relation to our case
studies. In particular, we will explore whether this ap-
proach allows us to scale up our work on the generation of
test cases from model checkers.

5.5 Task 5 - Composition of heterogeneous
specifications

The long term success of the approach depends on
our ability to define specification morphisms between
specifications written in different notations. Existing work
on institution morphisms has demonstrated that category
theory provides a suitable framework of the use of multi-
ple logics in software development. We will explore how
this work can be applied to the management of inconsis-
tency between heterogeneous viewpoints. Our starting
point for this task will be to investigate how to combine
multiple model checkers.

6 Evaluation

The expected benefits of this approach are an im-
provement in software quality and safety, by increasing
the ability of software developers to detect and track in-
consistencies between development artifacts. Since it is
difficult to assess direct effects of our work on qualitative
properties in a quantitative fashion, we will measure spe-
cific forms of traceability provided by our approach rela-
tive to existing methods. Appropriate measures of
traceability include:
• Does the analysis technique reveal classes of errors

that were difficult or time consuming to detect using
existing methods?

• Does the approach offer concrete representations for
relationships between software development artifacts
such that the relationship can be automatically
tracked as the development proceeds?

• Does the approach allow for assessment of design
alternatives based on a comparison of different ways
of resolving inconsistencies?
Any improvement in traceability will have a signifi-

cant impact on software development efforts in large or-
ganizations. For example, the lack of information about
design decisions is a major factor in the high cost of soft-
ware maintenance [15]. As software evolves through its
“adoption” by different contractors, people, projects, and
applications, it becomes more difficult to discover the
reasons for various design decisions when trying to make
changes to the software. Rediscovering such decisions in
an expensive and time consuming task.

7 Summary

The lack of traceability between the activities of de-
velopers in large, complex projects leads to inconsisten-
cies between the artifacts they produce during the
software development process. Such inconsistencies, left
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unmanaged, tend to become major sources of costly errors
and rework in later phases of a project’s lifecycle. To
remedy this problem, we propose to investigate the use of
new technology and methods that will help automate
traceability between the artifacts and help manage incon-
sistencies that inevitably arise. By managing these incon-
sistencies properly, we hope to better control their
potential effects on project quality and safety.

Our research addresses the twin challenges of devel-
oping analysis techniques that reveal and characterize
inconsistencies during software development, and pro-
viding a modeling scheme to represent and track consis-
tency relationships between the various artifacts
developed during the software process.

A general solution to the problems of traceability and
inconsistency is a difficult problem, but we intend to build
upon previous, successful work by applying our work to
additional real-world projects. Only through applied re-
search can we refine potential solutions and discover new
avenues that will lead to practical solutions to the com-
plex problems inherent in large software development
efforts.
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